FIFTH GRADE

The performance expectations in fifth grade help students formulate answers to questions such as: "When matter changes, does its weight change? How much water can be found in different places on Earth? Can new substances be created by combining other substances? How does matter cycle through ecosystems? Where does the energy in food come from and what is it used for? How do lengths and directions of shadows or relative lengths of day and night change from day to day, and how does the appearance of some stars change in different seasons?" Fifth grade performance expectations include PS1, PS2, PS3, LS1, LS2, ESS1, ESS2, and ESS3

Disciplinary Core Ideas from the NRC Framework. Students are able to describe that matter is made of particles too small to be seen through the development of a model. Students develop an understanding of the idea that regardless of the type of change that matter undergoes, the total weight of matter is conserved. Students determine whether the mixing of two or more substances results in new substances. Through the development of a model using an example, students are able to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. They describe and graph data to provide evidence about the distribution of water on Earth. Students develop an understanding of the idea that plants get the materials they need for growth chiefly from air and water. Using models, students can describe the movement of matter among plants, animals, decomposers, and the environment and that energy in animals' food was once energy from the sun. Students are expected to develop an understanding of patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.

The crosscutting concepts of patterns; cause and effect; scale, proportion, and quantity; energy and matter; and systems and systems models are called out as organizing concepts for these disciplinary core ideas. In the fifth grade performance expectations, students are expected to demonstrate grade-appropriate proficiency in developing and using models, planning and carrying out investigations, analyzing and interpreting data, using mathematics and computational thinking, engaging in argument from evidence, and obtaining, evaluating, and communicating information; and to use these practices to demonstrate understanding of the core ideas.

5. Structure and Properties of Matter

Students who demonstrate understanding can:

5-PS1-1

Develop and use a model to describe that matter is made of particles too small to be seen. [Clarification Statement: Examples of evidence supporting a model could include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, and evaporating salt water.] [Assessment Boundary: Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.]

5-PS1-2

Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved. [Clarification Statement: Examples of reactions or changes could include phase changes, dissolving, and mixing that form new substances.] [Assessment Boundary: Assessment does not include distinguishing mass and weight.]

5-PS1-3

Make observations and measurements to identify materials based on their properties. [Clarification Statement: Examples of materials to be identified could include baking soda and other powders, metals, minerals, and liquids. Examples of properties could include color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic forces, and solubility; density is not intended as an identifiable property.] [*Assessment Boundary: Assessment does not include density or distinguishing mass and weight.*]

5-PS1-4

Conduct an investigation to determine whether the mixing of two or more substances results in new substances. [Clarifying Statement: Share finding from the investigation.]

Students who demonstrate understanding can: Develop and use a model to describe that matter is made of particles too small to be seen.

Clarification Statement: Examples of evidence supporting a model could include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, and evaporating salt water.

Assessment Boundary: Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and Using Models	PS1.A: Structure and Properties of Matter	Scale, Proportion, and Quantity
Use models to describe phenomena.	 Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects. 	 Natural objects exist from the very small to the immensely large.

Students who demonstrate understanding can: Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved.

Clarification Statement: Examples of reactions or changes could include phase changes, dissolving, and mixing that form new substances.

Assessment Boundary: Assessment does not include distinguishing mass and weight.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Using Mathematics and Computational	PS1.A: Structure and Properties of Matter	Scale, Proportion, and Quantity
Thinking	 The amount (weight) of matter is 	• Standard units are used to measure and
Measure and graph quantities such as	conserved when it changes form, even in	describe physical quantities such as
weight to address scientific and	transitions in which it seems to vanish.	weight, time, temperature, and volume.
engineering questions and problems.		
	PS1.B: Chemical Reactions	Connections to Nature of Science
	No matter what reaction or change in	
	properties occurs, the total weight of the	Scientific Knowledge Assumes an Order and
	substances does not change. (Boundary:	Consistency in Natural Systems
	Mass and weight are not distinguished at	Science assumes consistent patterns in
	this grade level.)	natural systems.

Students who demonstrate understanding can: Make observations and measurements to identify materials based on their properties.

Clarification Statement: Examples of materials to be identified could include baking soda and other powders, metals, minerals, and liquids. Examples of properties could include color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic forces, and solubility; density is not intended as an identifiable property.

Assessment Boundary: Assessment does not include density or distinguishing mass and weight.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.
--

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Planning and Carrying Out Investigations	PS1.A: Structure and Properties of Matter	Scale, Proportion, and Quantity
 Make observations and measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon. 	 Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.) 	 Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume.

Students who demonstrate understanding can: Conduct an investigation to determine whether the mixing of two or more substances results in new substances.

Clarifying Statement: Share finding from the investigation.

The norfermance evenetations shows were	doveloped using the following elements from the N	NRC document A Framework for K-12 Science Education.
The performance expectations above were	e developed using the following elements from the r	NRC document A Framework for K-12 Science Education.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
	 PS1.B: Chemical Reactions When two or more different substances are mixed, a new substance with different properties may be formed. 	 Cause and Effect Cause and effect relationships are routinely identified and used to explain change.

5. Matter and Energy in Organisms and Ecosystems

Students who demonstrate understanding can:

5-PS3-1

Use models to describe that energy in animals' food (used for body repair, growth, and motion and to maintain body warmth) was once energy from the sun. [Clarification Statement: Examples of models could include diagrams, and flow charts.]

5-LS1-1

Support an argument that plants get the materials they need for growth chiefly from air and water. [Clarification Statement: Emphasis is on the idea that plant matter comes mostly from air and water, not from the soil.]

5-LS2-1

Develop and describe a model that describes the movement of matter among plants, animals, decomposers, and the environment. [Clarification Statement: Emphasis is on the idea that matter that is not food (air, water, decomposed materials in soil) is changed by plants into matter that is food. Examples of systems could include organisms, ecosystems, and the Earth.] [Assessment Boundary: Assessment does not include molecular explanations.]

5-PS3-1

Students who demonstrate understanding can: Use models to describe that energy in animals' food (used for body repair, growth, and motion and to maintain body warmth) was once energy from the sun.

Clarification Statement: Examples of models could include diagrams, and flow charts.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and Using Models	PS3.D: Energy in Chemical Processes and	Energy and Matter
Use models to describe phenomena.	 Everyday Life The energy released [from] food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water). 	 Energy can be transferred in various ways and between objects.
	 LS1.C: Organization for Matter and Energy Flow in Organisms Food provides animals with the materials they need for body repair and growth and the energy they need to maintain body warmth and for motion. (Secondary) 	

5-LS1-1

Students who demonstrate understanding can: Support an argument that plants get the materials they need for growth chiefly from air and water.

Clarification Statement: Emphasis is on the idea that plant matter comes mostly from air and water, not from the soil.

The performance expectations above were developed using the following elements from the NRC document A Framework for	KADC-LARE Floresting
The performance expectations above were developed lising the following elements from the NRU document A Framework to	1r K-17 Science Failcation
The performance expectations above were developed using the following clements monthlice three documents in the	The selence Education.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
 Engaging in Argument from Evidence Support an argument with evidence, data, or a model. 	 LS1.C: Organization for Matter and Energy Flow in Organisms Plants acquire their material for growth chiefly from air and water. 	 Energy and Matter Matter is transported into, out of, and within systems.

5-LS2-1

Students who demonstrate understanding can: Develop and describe a model that describes the movement of matter among plants, animals, decomposers, and the environment.

Clarification Statement: Emphasis is on the idea that matter that is not food (air, water, decomposed materials in soil) is changed by plants into matter that is food. Examples of systems could include organisms, ecosystems, and the Earth.

Assessment Boundary: Assessment does not include molecular explanations.

The performance expectations above were develop	and we there the a faille sector and a sector that the NDC	de anna ant A Franciscul fan K 40 Calence Education
I he performance expectations above were develop	ed lising the following elements from the NRC	α_{0}
The performance expectations above were develop		

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Developing and Using Models	LS2.A: Interdependent Relationships in	Systems and System Models
• Develop a model to describe phenomena.	Ecosystems	• A system can be described in terms of its
	• The food of almost any kind of animal can	components and their interactions.
Connections to the Nature of Science	be traced back to plants. Organisms are	
	related in food webs in which some	
Science Models, Laws, Mechanisms, and	animals eat plants for food and other	
Theories Explain Natural Phenomena	animals eat the animals that eat plants.	
 Science explanations describe the 	Some organisms, such as fungi and	
mechanisms for natural events.	bacteria, break down dead organisms	
	(both plants or plants parts and animals)	
	and therefore operate as "decomposers."	
	Decomposition eventually restores	
	(recycles) some materials back to the soil.	
	Organisms can survive only in	
	environments in which their particular	
	needs are met. A healthy ecosystem is	
	one in which multiple species of different	
	types are each able to meet their needs	
	in a relatively stable web of life. Newly	
	introduced species can damage the	
	balance of an ecosystem. ≫	

LS2.B: Cycles of Matter and Energy Transfer in Ecosystems• Matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter (gas, liquid, or solid) back into the environment.

5. Earth's Systems

Students who demonstrate understanding can:

5-ESS2-1

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere (water), cryosphere (ice), and/or atmosphere interact. [Clarification Statement: Examples could include the influence of the ocean on ecosystems, landform shape, and climate; the influence of the atmosphere on landforms and ecosystems through weather and climate; and the influence of mountain ranges on winds and clouds in the atmosphere. The geosphere, hydrosphere, cryosphere, atmosphere, and biosphere are each a system.] [Assessment Boundary: Assessment is limited to the interactions of two systems at a time.]

5-ESS2-2

Describe and graph the amounts of salt water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth. [Clarification Statement: Examples could include lakes, rivers, glaciers, sea ice, oceans, groundwater, and polar ice caps. Represent and interpret the data represented by the graphical displays.] [Assessment Boundary: Assessment is limited to oceans, lakes, rivers, glaciers, ground water, and polar ice caps, and does not include the atmosphere.]

5-ESS3-1

Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources and environment.

5-ESS2-1

Students who demonstrate understanding can: Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere (water), cryosphere (ice), and/or atmosphere interact.

Clarification Statement: Examples could include the influence of the ocean on ecosystems, landform shape, and climate; the influence of the atmosphere on landforms and ecosystems through weather and climate; and the influence of mountain ranges on winds and clouds in the atmosphere. The geosphere, hydrosphere, cryosphere, atmosphere, and biosphere are each a system.

Assessment Boundary: Assessment is limited to the interactions of two systems at a time.

 Developing and Using Models Develop a model using an example to describe a scientific principle. 	 ESS2.A: Earth Materials and Systems Earth's major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and 	 Systems and System Models A system can be described in terms of its components and their interactions.
	(solid and molten rock, soil, and	•
	ice), the atmosphere (air), and the biosphere (living things, including humans). These systems interact in multiple ways to affect Earth's surface materials and processes. The ocean supports a variety of ecosystems and organisms, shapes landforms, and influences climate. Winds and clouds in the atmosphere interact with the landforms to determine patterns of	

5-ESS2-2

Students who demonstrate understanding can: Describe and graph the amounts of salt water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.

Clarification Statement: Examples could include lakes, rivers, glaciers, sea ice, oceans, groundwater, and polar ice caps. Represent and interpret the data represented by the graphical displays.

Assessment Boundary: Assessment is limited to oceans, lakes, rivers, glaciers, ground water, and polar ice caps, and does not include the atmosphere.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Using Mathematics and Computational	ESS2.C: The Roles of Water in Earth's Surface	Scale, Proportion, and Quantity
 Thinking Describe and graph quantities such as area and volume to address scientific questions. 	 Processes Nearly all of Earth's available water is in the ocean. Most fresh water is in glaciers or underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere. 	 Standard units are used to measure and describe physical quantities such as weight and volume.

5-ESS3-1

Students who demonstrate understanding can: Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources and environment.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Obtaining, Evaluating, and Communicating	ESS3.C: Human Impacts on Earth Systems	Systems and System Models
Information	• Human activities in agriculture, industry,	• A system can be described in terms of its
Obtain and combine information from	and everyday life have had major effects	components and their interactions.
books and/or other reliable media to	on the land, vegetation, streams, ocean,	
explain phenomena or solutions to a	air, and even outer space. But individuals	Connections to Nature of Science
design problem.	and communities are doing things to help	
	protect Earth's resources and	Science Addresses Questions About the
	environments.	Natural and Material World.
		Science findings are limited to questions
		that can be answered with empirical
		evidence.

5. Space Systems: Stars and the Solar System

Students who demonstrate understanding can:

5-PS2-1

Support an argument that the gravitational force exerted by Earth on objects is directed toward the center of the Earth. [Clarification Statement: "Down" is a local description of the direction that points toward the center of the spherical Earth.] [Assessment Boundary: Assessment does not include mathematical representation of gravitational force.]

5-ESS1-1

Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from the Earth. [Assessment Boundary: Assessment is limited to relative distances, not sizes, of stars. Assessment does not include other factors that affect apparent brightness (such as stellar masses, age, and stage).]

5-ESS1-2

Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, daily appearance of the moon, and the seasonal appearance of some stars in the night sky. [Clarification Statement: Examples of patterns could include the position and motion of Earth with respect to the sun and selected stars that are visible only in particular months.] [Assessment Boundary: Assessment does not include causes of seasons.]

5-PS2-1

Students who demonstrate understanding can: Support an argument that the gravitational force exerted by Earth on objects is directed toward the center of the Earth.

Clarification Statement: "Down" is a local description of the direction that points toward the center of the spherical Earth.

Assessment Boundary: Assessment does not include mathematical representation of gravitational force.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
 Engaging in Argument from Evidence Support an argument with evidence, data, or a model. 	 PS2.B: Types of Interactions The gravitational force of Earth acting on an object near Earth's surface pulls that object toward the planet's center. 	 Cause and Effect Cause and effect relationships are routinely identified and used to explain change.

5-ESS1-1

Students who demonstrate understanding can: Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from the Earth.

Assessment Boundary: Assessment is limited to relative distances, not sizes, of stars. Assessment does not include other factors that affect apparent brightness (such as stellar masses, age, and stage).

The performance expectations above were	e developed using the following elements from the NRC	document A Framework for K-12 Science Education.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Engaging in Argument from Evidence	ESS1.A: The Universe and its Stars	Scale, Proportion, and Quantity
 Support an argument with evidence, data, or a model. 	• The sun is a star that appears larger and brighter than other stars because it is closer. Stars range greatly in their distance from Earth.	 Natural objects exist from the very small to the immensely large.

5-ESS1-2

Students who demonstrate understanding can: Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, daily appearance of the moon, and the seasonal appearance of some stars in the night sky.

Clarification Statement: Examples of patterns could include the position and motion of Earth with respect to the sun and selected stars that are visible only in particular months.

Assessment Boundary: Assessment does not include causes of seasons.

ESS1.B: Earth and the Solar System	Patterns
 The orbits of Earth around the sun and of the mean around Earth, together with 	 Similarities and differences in patterns can be used to sort, classify,
the rotation of Earth about an axis	communicate and analyze simple rates of
• • •	change for natural phenomena.
and night; daily changes in the length and	
·	
different times of the day, month, and	
year.	
	The orbits of Earth around the sun and of the moon around Earth, together with the rotation of Earth about an axis between its North and South poles, cause observable patterns. These include day and night; daily changes in the length and direction of shadows; and different positions of the sun, moon, and stars at different times of the day, month, and

3-5.Engineering Design

Students who demonstrate understanding can:

3-5-ETS1-1

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

3-5-ETS1-2

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

3-5-ETS1-3

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

3-5-ETS1-1

Students who demonstrate understanding can: Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education.	
The performance expectations above were developed using the following elements from the interaction A Francework for K-12 science Education.	

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Asking Questions and Defining Problems	ETS1.A: Defining and Delimiting Engineering	Influence of Engineering, Technology, and
• Define a simple problem that can be	Problems	Science on Society and the Natural World
solved through the development of an	Possible solutions to a problem are	People's needs and wants change over
object, tool, process, or system and	limited by available materials and	time, as do their demands for new and
includes several criteria for success and	resources (constraints). The success of a	improved technologies.
constraints on materials, time, or cost.	designed solution is determined by	
	considering the desired features of a	
	solution (criteria). Different proposals for	
	solutions can be compared on the basis	
	of how well each one meets the specified	
	criteria for success or how well each	
	takes the constraints into account.	

3-5-ETS1-2

Students who demonstrate understanding can: Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Constructing Explanations and Designing	ETS1.B: Developing Possible Solutions	Influence of Engineering, Technology, and
Solutions	• Research on a problem should be carried	Science on Society and the Natural World
• Generate and compare multiple solutions	out before beginning to design a solution.	Engineers improve existing technologies
to a problem based on how well they	Testing a solution involves investigating	or develop new ones to increase their
meet the criteria and constraints of the	how well it performs under a range of	benefits, decrease known risks, and meet
design problem.	likely conditions.	societal demands.
	• At whatever stage, communicating with	
	peers about proposed solutions is an	
	important part of the design process, and	
	shared ideas can lead to improved	
	designs.	

3-5-ETS1-3

Students who demonstrate understanding can: Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Science and Engineering Practices	Disciplinary Core Ideas	Crosscutting Concepts
Planning and Carrying Out Investigations	ETS1.B: Developing Possible Solutions	
Plan and conduct an investigation	Tests are often designed to identify	
collaboratively to produce data to serve	failure points or difficulties which suggest	
as the basis for evidence, using fair tests	the elements of a design that need to be	
in which variables are controlled and the	improved.	
number of trials is considered.		
	ETS1.C: Optimizing the Design Solution	
	Different solutions need to be tested in	
	order to determine which of them best	
	solves the problem, given the criteria and	
	the constraints.	